Virtual Reality and Augmented Reality

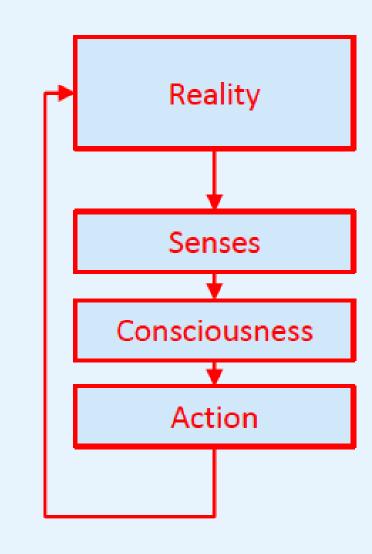
Perception and Technology

Dr. Fatma ElSayed

Computer Science Department fatma.elsayed@fci.bu.edu.eg

Perception and Technology

How do We Perceive Reality?


- We understand the world through our senses:
 - Sight, Hearing, Touch, Taste, Smell
- Two basic processes:

Sensation: Gathering information

Perception: Interpreting information

Simple Sensing/Perception Model

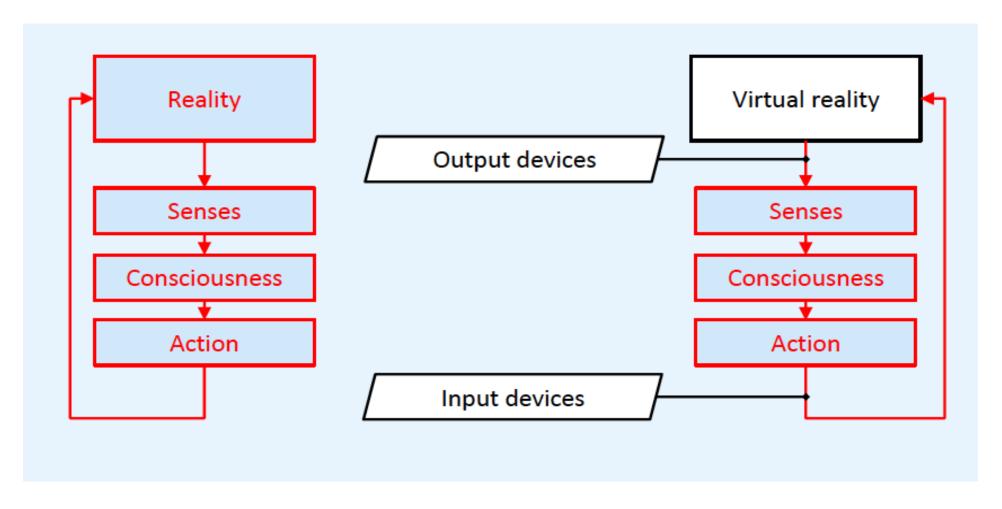
Simple Sensing/Perception Model

Cycle of perception and action:

- Reality: This represents the external world, which exists independently.
- Senses: Humans (or organisms) perceive reality through their senses (sight, hearing, touch, taste, and smell).
- Consciousness: The sensory information is **processed** by the brain, creating awareness and understanding.
- Action: Based on this consciousness, the individual takes action.
- Feedback Loop: The action then influences reality, and the cycle continues.

Goal of Virtual Reality

- ".. to make it feel like you're actually in a place that you are not."
- Creating the Illusion of Reality
 - Fooling human perception by using technology to generate artificial sensations.
 - Computer generated sights, sounds, smell, etc



The Oculus Rift CV1, the first commercial VR headset

Palmer Luckey Co-founder, Oculus

Reality vs. Virtual Reality

In a VR system there are input and output devices between human perception and action

Reality vs. Virtual Reality

Virtual Reality: Instead of real-world stimuli, a VR system generates a digital environment.

Senses: VR output devices (e.g. headsets, speakers) simulate real-world sensory experiences.

Consciousness: The brain processes these virtual sensory inputs as if they were real.

Action: The user reacts within the VR environment (e.g., moving, interacting).

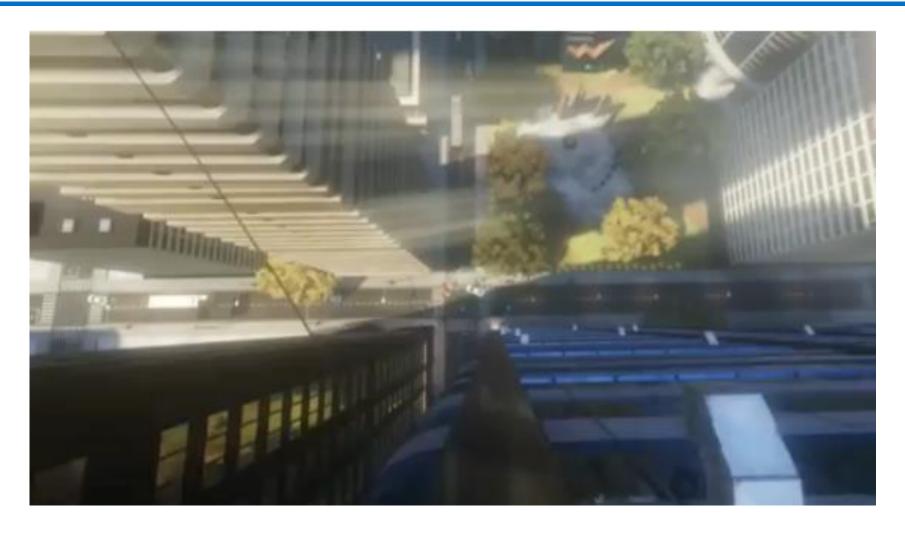
Feedback Loop: Actions are captured by input devices (e.g. controllers), which update the VR environment accordingly.

Example Birdly

Create illusion of flying like a bird

- Multisensory VR experience
 - Visual, audio, wind, haptic

https://www.youtube.com/watch?v=gHE6H62GHoM


Immersion vs. Presence

- Immersion: describes the extent to which technology is capable of delivering an illusion of reality to the senses of a human.
- **Presence:** a state of consciousness, the (psychological) sense of being in the virtual environment.
- So Immersion, defined in technical terms, is capable of producing a sensation of Presence.

Goal of VR: Create a high degree of Presence

Make people believe they are really in Virtual Environment

Richie's Plank Experience

https://www.youtube.com/watch?v=4M92kfnpg-k

Four Illusions of Presence

Place Illusion:

• Feeling inside the virtual world (the sensation that you are physically inside the virtual environment)

Plausibility Illusion:

Events are real (depends on consistent interactions)

Body Ownership:

• Seeing your body in VR

Social Presence:

Other people are in VR (feel that other virtual characters (avatars)
represent real people with whom they can interact)

Measuring Presence

Presence is very subjective and the following summarizes how to measure it:

1. Subjective Measures

- Self report questionnaire
 - ask users to reflect on their experiences and rate their immersion, realism, and interaction with the virtual world.
- Continuous measure
 - Person moves slider bar in virtual environment depending on Presence felt.

2. Objective Measures

- Physiological measures
 - Change in heart rate, skin conductance, skin temperature

AR Technology

AR Characteristics

Combines Real and Virtual Images

Needs: Display technology

Interactive in real-time

- Needs: Input and interaction technology
- For example: Touch-Based Interaction, Gesture Recognition, Controller-Based Interaction

Registered in 3D

- Needs: Viewpoint tracking technology
- For example: GPS Tracking, Marker-Based Tracking, SLAM (Simultaneous Localization and Mapping)

Example: Magic Leap Display

Display

Multi-layered Waveguide display

Tracking

• Inside out SLAM tracking (is a computer vision technique in AR that uses device built-in cameras and sensors to map the environment and track the device's movement in real time.)

Input

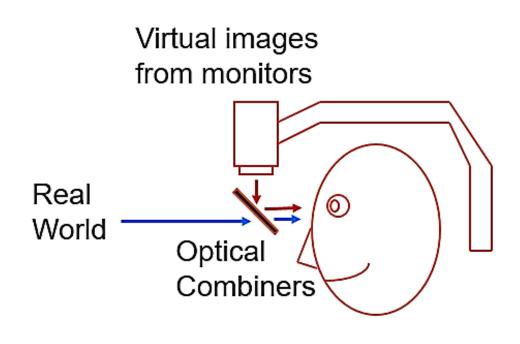
• 6DOF wand, gesture input

AR Display Technologies

Classification (Bimber/Raskar 2005)

- Head attached
 - Head mounted display/projector

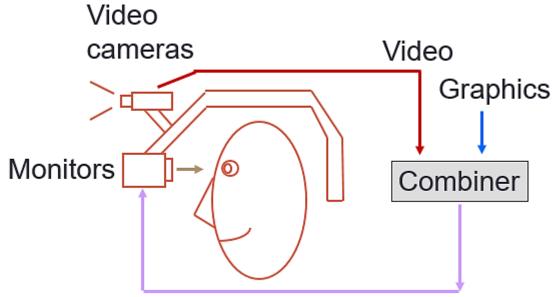
- Handheld display/projector
- Spatial
 - Spatially aligned projector/monitor


Head Mounted Display

Types of Head Mounted Displays

1. Optical see-through HMD

- See the real world directly through transparent lenses.
- **Micro displays** inside the headset generate virtual images, which are then reflected and guided to the user's eyes using optical combiners.
- Better for outdoor use, lower latency, more natural experience, as users see the world with their own eyes.


e.g. Microsoft HoloLens and Magic Leap

Types of Head Mounted Displays

2. Video see-through HMD

- The real world is captured by **cameras** and shown on internal screens inside the headset. **Do NOT** see the real world directly, only its **video feed.**
- Can achieve full VR and AR, not ideal for outdoor use, higher latency.

Handheld AR

Handheld AR

- Camera + display = handheld AR
- Mobile phone/Tablet display
- Video see-through AR

User-Perspective Hand-Held Display

User perspective	Device perspective
What the user actually sees on the screen.	How the AR system understands the real world using the camera and sensors.
The user moves the device to see the AR content	The device calculates where and how to place AR content
Happens after the device processes AR objects	Happens before the AR object appears

For Developers: Understanding device perspective helps you design better tracking & placement for AR objects.

Spatial AR

Spatial AR

- Project onto irregular surfaces
 - Geometric Registration: This ensures that virtual content is aligned accurately with the real-world surface.
 - **Projector blending:** When multiple projectors are used to cover a large area, It eliminates overlapping projections.

THANK YOU